Search results

Search for "advanced oxidation processes" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a
  • applications, are addressed. Keywords: advanced oxidation processes; emerging contaminants; low-dimensional nanomaterials; pharmaceutical by-products; Schottky junction; Review Introduction Worldwide, water pollution is rising, endangering the economic potential and development objectives of severely
  • treat contaminated water and wastewater, including adsorption, bioremediation, precipitation, electrocoagulation, filtration, membrane separation, flocculation, centrifugation, advanced oxidation processes based on photocatalysis, and chemical coagulation [4][5][6][7][8][9][10][11]. Each of these
PDF
Album
Review
Published 03 Mar 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • regulations to them [8]. Consequently, there is a growing need to develop processes for removing BPs from wastewater. In recent decades, much attention has been paid to advanced oxidation processes (AOPs) in the research and development of wastewater treatment technologies [7][9]. Processes such as cavitation
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • degradation, antibiotic treatment, and sterilization [38]. The term “advanced oxidation processes” has become more common recently. In this process, many oxidizing agents (∙OH) are created. Electron–hole pairs are formed in AOPs when the VB electrons of semiconductor photocatalysts are driven into the
PDF
Album
Review
Published 11 Nov 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • pollutants, such as adsorption, coagulation, filtration, and chemical and biochemical oxidation [10][11]. Advanced oxidation processes (AOPs) have recently attracted attention due to their simple operation, low cost, and potentially high effectiveness. AOPs are the technologies that use various chemical
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • the production of secondary waste products that require further treatment. Advanced oxidation processes, in general, and heterogeneous semiconductor photocatalysis, in particular, are promising candidates to efficiently treat wastewater as they are cost-effective and green treatment methods in which
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • nature as a whole. In recent years, advanced oxidation processes including Fenton [3], Fenton-like [4][5][6] and photocatalysis [7] reactions have been widely used in wastewater treatment. In addition, photocatalysis has attracted great attention due to advantages such as environmental sustainability
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • oxidative decomposition of organic pollutants to non-toxic inorganic species such as carbon dioxide, avoiding the formation of any kind of residual sludge [23]. In fact, advanced oxidation processes (AOP) might be considered as promising technologies for the sustainable removal of pollutants from urban
PDF
Album
Review
Published 31 May 2019

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • such as excellent chemical stability, photo-corrosion resistance, low cost, and low toxicity make TiO2 a material suitable for energy production and environmental applications, such as advanced oxidation processes for the decomposition of organic pollutants in water [2][3]. However, the material
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • can not be degraded spontaneously, thus various methods focusing on the removal of organic pollutant, including adsorption, photocatalysis and advanced oxidation processes, have been extensively studied over the past decades [2][4][5]. Among these methods, advanced oxidation processes (AOP) are
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Investigation of the photocatalytic efficiency of tantalum alkoxy carboxylate-derived Ta2O5 nanoparticles in rhodamine B removal

  • Subia Ambreen,
  • Mohammad Danish,
  • Narendra D. Pandey and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2017, 8, 604–613, doi:10.3762/bjnano.8.65

Graphical Abstract
  • removal, sedimentation and filtration are not very effective in removing organic dyes. Advanced oxidation processes (AOPs) receive a lot of interest in this regard, and photocatalysis by semiconductors is the most extensively investigated AOP. Metal oxide nanoparticles (NPs), for example TiO2, ZnO, SnO2
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2017

Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

  • Hoai Nga Le,
  • Frank Babick,
  • Klaus Kühn,
  • Minh Tan Nguyen,
  • Michael Stintz and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2015, 6, 2423–2430, doi:10.3762/bjnano.6.250

Graphical Abstract
  • significant obscuration. Keywords: AOPs; reaction rate constant; turbidity; ultrasonic energy; wastewater treatment; Introduction Advanced oxidation processes (AOPs) form a group of modern chemical technologies that rely on the generation of radical species and are considered to have high prospects for the
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2015

Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

  • Carolina Gil-Lozano,
  • Elisabeth Losa-Adams,
  • Alfonso F.-Dávila and
  • Luis Gago-Duport

Beilstein J. Nanotechnol. 2014, 5, 855–864, doi:10.3762/bjnano.5.97

Graphical Abstract
  • growing interest in nanomaterials for green environmental remediation. For example, catalytically active synthetic nanoparticles inspired by natural minerals have been combined with in situ advanced oxidation processes (AOPs) as a potential strategy to remediate contaminants [1][2][3]. These AOPs generate
PDF
Album
Full Research Paper
Published 16 Jun 2014

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • effective chemical methods is an acute problem that has been tackled by advanced oxidation processes [1]. The photocatalytic production of reactive oxygen species by using semiconductor technology has emerged as a sustainable and promising route for such advanced oxidation processes [2][3][4][5][6]. In
PDF
Album
Supp Info
Letter
Published 24 Apr 2014

Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

  • Wolfgang M. Samhaber and
  • Minh Tan Nguyen

Beilstein J. Nanotechnol. 2014, 5, 476–484, doi:10.3762/bjnano.5.55

Graphical Abstract
  • biological degradation, also described as effluent polishing, can be carried out conventionally through natural UV-radiation in large surface ponds or, with reduced area demands, in photocatalytic systems, in which the so-called advanced oxidation processes are conducted. The photocatalytic systems exhibit
PDF
Album
Full Research Paper
Published 15 Apr 2014
Other Beilstein-Institut Open Science Activities